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Propagation and Coupling Characteristics
of Microstrip Lines with Laminated
Ground Plane

Jean-Fu Kiang, Member, IEEE

Abstract— In this paper, we analyze the effect of laminated
ground plane on the propagation and coupling characteristics of
microstrip lines. Each lamina is modeled as an anisotropic layer,
and transition matrix is used to relate the tangential field com-
ponents in different laminae. An integral equation is formulated
in the spectral domain, and the Galerkin’s method is applied
to solve the integral equation for the phase and the attenuation
constants of several microstrip line structures. The effects of
substrate dielectric are also studied. The attenuation constant
variation thus obtained will be useful in circuit board design and
in studying signal transmission in lamina environment.

1. INTRODUCTION

N SOME MODERN multilayer circuit board designs, per-

forations are fabricated in the ground plane to improve the
adhesion between the substrates and the ground plane with
temperature variation. The designer can also route vias through
these perforations without punching holes in the ground plane.
Propagation characteristics with periodically perforated ground
plane have been analyzed by several authors [1]-[3]. In [1]
and [2], integral equations were derived based on the electric
surface current on the metal surface. In [3]. the authors
used electric surface current on the microstrip line and used
magnetic surface current on the perforations as field sources.
These approaches worked well when the perforation size is
comparable to wavelength in the medium. If the microstrip
is much wider than the perforation dimension, too many
unknowns are needed to model surface currents.

Some ground planes are fabricated by laying one layer of
metallic wires over the substrate followed by another layer of
wires perpendicular to the first layer. Hence. such ground plane
can be treated as two stacking layers of anisotropic media. In
each wire layer, the conductivity along the wire orientation is
much higher than the perpendicular orientations.

Scattering from sandwiched layer of conducting fibers has
been analyzed in [4]. The fiber spacing is comparable to
wavelength, hence Floquet modes are incorporated in the
analysis. In [5], an anisotropic conductivity tensor is used to
study the shielding effectiveness of a G/E lamina which is an
epoxy resin embedding graphite fibers. G/E lamina and similar
composites have been widely used in aerospace industry. The
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fiber separation in the G/E lamina is a tiny fraction of a
wavelength, hence using an equivalent conductivity tensor is
appropriate to analyze its propagation properties.

Recently, anisotropy and inhomogeneity of the circuit board
have been considered in the analysis of high speed digital
transmission [6], [7]. In {7], a differential matrix operator is
detived from Maxwell’s equations to calculate the tangential
field components. This method was also used in optics [8],
[9]. and scattering [10]. General derivation can also be found
in [11] and [12].

With either perforated ground plane or laminated ground
plane. the propagation characteristics are different from that
obtained by the solid ground plane assumption. We assume
that the wire/fiber spacing in each lamina of the ground
plane is much smaller than a wavelength, hence each lamina
can be modeled as an anisotropic layer with a conductivity
tensor. Leakage through the laminated ground plane will cause
coupling between two microstrip lines on opposite sides of the
ground plane. The coupling induces difference of phase and
attenuation constants between the even and the odd modes.

Microstrip phased array with microstrip line feeding struc-
ture has been built on aircraft surface [13]. Similar array may
be mounted on modern aircrafts where composite material is
used. Hence, it is very important and practical to understand
the propagation characteristics of microstrip line on laminated
composite ground plane.

We will first formulate a transition matrix, and then derive
an integral equation based on the electric surface current on
the microstrip lines. Galerkin's method is applied to solve for
the phase and attenuation constants of given microstrip line
structures. Next, we apply the same procedures to study the
propagation properties of two coupled microstrip lines.

II. TRANSITION MATRIX

As shown in Fig. 1, a microstrip line is printed on the
surface of substrate layer (1). The ground plane is made of lam-
inae with each lamina described by an effective permittivity
tensor and an effective conductivity tensor. If more shielding
effectiveness is required, we may bind more laminae or choose
material of higher conductivity to form the ground plane.

We first derive a transition matrix for waves in anisotropic
layers. Assume that all layers are stacked along the » direction,
the effective permittivity (€) and conductivity (7) tensors in
each layer are independent of z. If the principal axis of 7 and
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Fig. 1. A microstrip hne i the presence of laminated ground plane.

€ skews from the x axis by an angle o (when the wires or
fibers are embedded with an angle o with the x axis), ¢ and
€ can be expressed as

_ [ 0 oz oy 0
=10 o = |0yz oy 0 |,
2z 0 0 o..
_ & 0 Cor oy O
€= e | = leyr cuy 0 (1)
= 0 0 e,
Where 53 and € are 2 X 2 tensors. &, = £/ cosa +
sin @, Ezy =y = (;y - gm)sinacosoz Eyy =

sin® a4+ & cos® a, and &,, = £ with £ be either € or .
1;1: yy

We also assume an isotropic permeablhty of y, in all layers.

Decompose the E field. H field, and the curl operator into
z component and s (z and y) components, substitute them
into the Faraday’s and the Ampere’s laws, and look for a
solution with the zy dependence of exp(iks - 7, ), we obtain
the following state-variable equations [8]-[12]

2
dE, — AH; + (iwﬂo _ ‘k*___>Hy
dz Oz — IWE Cosy ~ WELs
dE, Lok

k2
. y
—iwpy + ————— | H, — ~——~fy—Hy
dz Oan — WWE,, Oas — TWE,,

dH, ( . ko k,
= | Oyp — iWeyp — t——
n .

Il

dz

dH,

dz

keky
—O gy + Wy E,. 2
+<oy+zwey+zwuo Y @)
The above equation can be solved numerically so that the
tangential field components at different 2’s are related by a
transition matrix as

V(ks,z) = P(ky, 2,0) - V(ks,0) (3)
where
V(ks, 2) = [Ex(ks, 2), Ey(ks’ 2), Hy(ks, 2), Hy(ksa O]

IIT. MICROSTRIP PROPAGATION CHARACTERISTICS

For the microstrip line structure with laminated ground
plane as shown in Fig. 1, the z-component of the fields in
each region can be expressed as

E02=/ dkwe“—“’ﬂeg(ﬁs)eik“’o
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where k, = Thy+9ky, 20 = 2, 21 = z+d, and z3 = z+d+h.
Assume that the wave modes propagate in the y direction, then
we have by, = (3 + ia where [3 is the phase constant and o
is the attenuation constant.

At z = 0, Fo, = E;, implies

]

“F2ho

B cos(ki-d)(ef —eP) + Z@ sin(k1.d)(el + eP)
- {“’k':" cos(khd)(hU + hD) + lﬁ”j" sin(k1.d)(hY — hP)

(6)

At z = 0, the discontinuities of magnetic fields account for
the surface current as J,(7,) = @ X [Hoe(z = 04) — Hy (2 =
—)]. Hence, we have (7), shown at the bottom of the page,

we
[

£ cos(ky.d)(eV +eP) - it sin(k1.d) (e — eP)
Koz pg — ’L cos(k1.d)(hY —

RP) — L£1—~ sin(ky.d)(RY + hP) @
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where

N
F(ks):F[ky *’d' (8)

The tangential field components at 2 = zy = —d and
2 = 29 = —d — h are related by the transition matrix
as

s)
= o= - [Bepg(l,
+P22'F(ks)["‘_s 35,5)} 9)

i

= - Pii(ke 2y, 2
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Eliminating the unknowns e, ho, e¥. e, RY, hP, e3, and
ha from (6), (7). and (9), the tangential electric field at = = 0
can be related to the patch surface current as

Bostr) = [ dhoe™ " Glho) - Lk ()
Details of derivation can be found in Appendix A.
Next, impose the boundary condition that
J.(7s) =0, outside of the strip
Eo.(7,) =0, on the strip surface. (12)

Equation (12) is the dual vector integral equation to be solved
for the dispersion relation.

IV. GALERKIN’S METHOD

The surface current .J,(7.) can be expressed as J.(x)et®¥ .
For a microstrip of width «, we choose a set of basis functions
to represent Jg(x) as

AL
+ Y bl fym(T)

m=0

(13)

B N
Jo(@) =) aniifrnlr)
n=1

where
sin[2%(x + a/2)], |af < a/2
fenl) = { 0, elsewhere
cos[ L (x+a/2)] < 9
fomle) = 4 Vrr—a o M=o/ (14)
0, elsewhere.

Taking the Fourier transform of (13), and substituting iato
(12), we have

/ dkxe”;
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TGk, 20 = 0)

Next, we choose another set of weighting functions
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gy (x) = {0, elsewhere. (16)

Taking the inner product of i’grk(;v)e_‘kyy (1<k<N)and
ggylz)e™ Y (0 < 1 < M) with (15), we have

N o o
Z G / dkygon(—k2)3 - Gks, 20 = 0) - @ fon(ks)

n=1 -

+z m/ d]‘nqu( ]" T G(’%sZO'—O Ufum(l‘/)

m=0

=0,

N o _
Z n / dkegyi(—k.)g - G(]“s- 20=0)2frn(k,)
n=1 —oo

1<k <

=

M o o
+ Z b / dkrgi/Z(_k«r)Z) : G(ks,ZO =0)- lgfym(k:c)
m=0 Ve

— 0, 0<1<M. (17)

Equation (17) constitutes a determinantal equation to be solved
for £, at a given frequency w.

V. COUPLING THROUGH GROUND PLANE

Consider a symmetrical structure as shown in Fig. 2 in
which both the even and the odd modes exist. For the
even mode, the longitudinal current .J, on both strips are in
phase, hence H, vanishes in the midplane. We may solve an
equivalent problem with a perfect magnetic conductor at the
midplane. Likewise, we may solve an equivalent problem with
a perfect electric conductor at the midplane for the odd mode.
The difference of £, between the even and the odd modes
indicates the coupling effect through the laminated ground
plane.
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problem for the odd mode.

The definitions of matrices in this section can be found in
Appendix B, Following the same procedures as in Section III
for the even mode

U D U D
ef —er | _ 5 ey hi —hi | _ 3 |e
{hlu‘i'h?} = [eu]7 [6[1]"'6? B Cy (19

where [e,, ¢,]? is the Fourier transform of £, at the midplane.
For the odd mode

el —eP ] 7 P RV —hPY 2@ [he
RY + AP | hy | eV +eP | hy,
(19)

where [h,, hy]* is the Fourier transform of H, at the midplane.

Imposing the boundary condition that £ is continuous at
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(a) Two symmetrical microstrip lines coupling through a laminated ground plane. (b) Equivalent problem for the even mode. (c) Equivalent

eo | _ gl |eo
PR @
where ¢ = e when a = e, and ¢ = h when o = o.

The surface current at z = 0 accounts for the discontinuity
of H,, and can be expressed as

Py O dhet®e T B X |
Ty = [ dkee® (R X @
—o00 Yy
Similarly, Fg, can be expressed as
Boo(r,) = / by G By, 20) - Tu(ka). (22)
—00
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Finally, impose the boundary condition as in (12) and use the
Galerkin’s procedure to solve for the dispersion relation for
the even and the odd modes.

VI. RESULTS AND DISCUSSIONS

We first verify our method by comparing effective dielectric
constants with literatures. To model the configuration in [7],
replace region (3) by a perfect electric conductor, and reduce
the thickness ot region (1) to zero. The computed effective
dielectric constant of a single microstrip line is close to the
data in [7].

In Fig. 4. we compare the effective dielectric constants of
two symmetrical microstrip lines with the data in [15]. The
thickness of region (1) is reduced to zero. Our results match
reasonably well with reference data.

Floquet modes approach is used in [4], where the fiber
spacing considered is around 0.1 to 0.5 wavelengths in the
resin matrix. The accuracy of permittivity and conductivity
tensor approximation in [5] render more accurate results when
the fiber spacing is smaller in terms of wavelength in the
resin matrix. If we estimate that fiber spacing be at most five
thousandths of a wavelength in the resin for the permittivity
and conductivity tensors to be a fair approximation, then the
highest frequency our approach can be applied to G/E com-
posite is around 8 GHz if the fiber spacing is around 100 um.

We then analyze the propagation properties of a microstrip
line. In Figs. 5 and 6. we show the phase and attenuation
constants of a microstrip line with laminated ground plane
and with a 1 pum-thick solid copper ground plane. The phase
constant with laminated ground plane increases as frequency
decreases, which implies a slower propagation speed. The
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3r |
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1 L ; L . .
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Fig. 4. Effective dielectric constant of two symmetrical mucrostrip lnes
coupling through a substrate of thickness 2h = 128 mm, ¢ = 0.1 mm,

d=0.¢,, =¢,, =¢c =99, (—this method, ** data from [15])

attenuation constant in both cases increases as the frequency
decreases. The microstrip line with laminated ground plane
has a higher attenuation constant than the other line. We also
study the effect of substrate dielectric constant e, and observe
that substrate having higher dielectric constant gives higher
attenuation rate.

Next, we study the coupling between two symmetrical
microstrip lines on opposite sides of a laminated ground plane.
The phase constants of the even and the odd modes differ
slightly. However, as shown in Fig. 7, the attenuation rate of
the even mode is higher than that of the odd mode especially
in the low frequency range.

In Figs. 8 and 9, we show the effect of substrate dielectric
constant on the propagation properties. The phase constant of
the even mode increases as frequency is decreased from 500
MHz. The even mode has a higher attenuation constant than
the odd mode, and the attenuation constant of both modes
increases as the substrate dielectric constant increases.

Finally, we study the effect of lamina conductivity on
the propagation properties. Assume that in each lamina. the
conductivity perpendicular to the wire/fiber orientation is
50 U/m, and the conductivity along the wire/fiber is varied
from 10*0/m to 2 x 1070/m. We observe that the phase
constants of both modes are insensitive to the conductivity
variation. The attenuation constant of the even mode de-
creases monotonically with conductivity, while the odd mode
attenuation constant reaches a maximum around 10%0/m. The
attenuation constant increases with the substrate dielectric con-
stant. Similar results are observed if we increase the number
of laminae instead of increasing the lamina conductivity.

In numerical computation, attention should be paid when:
1) there are too many composite layers; 2) lamina(e) is too
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Fig. 6. Attenuation constant of a microstrip line with solid copper or laminated ground plane, the parameters are the same as in Fig. 5.

thick; or 3) laminate conductivity is too high. We may define and o,,. We observe that when the total laminate thickness
a skin depth 6,, = \/2/wp0,, to estimate field penetration is larger than 106,,, some irregular variations may appear,

into laminated media, where o,,, is the maximum of o.,,, & indicating that numerial accuracy is deteriorated by truncation

/
vy’
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Fig 7 Attenuation constant of two symmetrical microstrip lines coupling through one lamina of solid copper ground plane, @ = 5 mm, d = 1 mm,
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Fig. 8. Phase constant of two symmetrical microstrip lmes coupling through four-lamina ground plane. ¢ = 5 mm. d = 1 mm, g = €3 = ¢,.
h=ty=t=t3 =127 um. a1 =0° a2 = 45° a3 =90°, a1 =135°. ¢, = ¢}, =L, = co. 0, =4 x WV/m. o), = oL, = 500/m.

errors. It is related to the fact that when the laminated media The laminate thickness associated with the results presented
is too thick in terms of skin depth &,,, coupling between the in this paper is thinner than 106, at the highest frequency
fields on planes z = —d and 2z = —d — h becomes too weak. considered.
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VII. CONCLUSION

We use a transition matrix to incorporate the effect of

laminated ground plane into our integral equation formulation.

€, = €, 0, = o, = 500/m.

Galerkin’s method is applied to solve for the dispersion
relation of microstrip lines. The coupling effect is analyzed by
comparing the even and the odd modes of two symmetrical
microstrip lines on opposite sides of the laminated ground
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plane. The phase constant is less sensitive to the ground plane  where it becomes as (27), shown at the bottom of the page.
except in the low frequency range. The attenuation constant From (25) and (26). Egs can be expressed as
has a wider range of variation as the lamina conductivity and
. . . . _ o] . _ _ ko
the frequency are changed. The results are useful in designing Fos(r,) = / dk, ' ”°elk°:”°F(k5) . { (f 0 }

circuit board and in studying signal transmission in lamina o
environment. ET 1 1? RS
]; — = — —
APPENDIX A / " G(ks, 20) - S (kz)- (28)
In this Appendix, we present the details of deriving the
relation between the tangential electric field at = = 0 and the APPENDIX B

patch surface current. Multiplying (9) by F(ks) and defining

@ — 1?(;; ) - P .- F(k,) with 1 <2, < 2, we have In this Appendix, we list the matrices used in deriving the
2 s 7, vg PN .

integral equation in Section V.

[~ (e? —eD)
(h hD) =(e) :i 0 =
MRCERNE o R™ = ke 4 | F(k)-Pu,
= ﬁeg(ks) ) = = h3 ks)- W
= Q . 5_'> v 7. + Q : fes T =(e . = - =
11 | — I:: hs(kg)_ 12 _Tjed(ks)_ (23) S( ) = |: 613 RO; :| N F(I‘FS) . Pgl (29)
(- h?)} ) woraL
u;fl (6% +_€%Z ~ . i . ) R(O) [ |:k[1]: L. :| F(];S) . P127
= (:321 %eg(ki) + ézz f;hf)(lj%) = (0) — -k, w(l)lo = =
—=Ee ha(ks) i .5363(/%)_ 5\ = { 8” & } - F(kg) - Pay (30)
weq
Solve (23) to have %(a) — cos(lnzd) {]‘é (1)} ﬁ)(a)
U _ D _ U D _
{6(1]_(11)}“3'[6)3} [h — hi }:S,{es} 24) 0 k=7 _(a)
hi +h hs ef +ef hs + i sin(ky.d) L ko} -5 (31)
Substituting (24) into (6), we obtain
and as in (32). shown at the bottom of the page
()] = €3
=T . (25) ;
ol = 2 6 ko) = o F (R - | e |
ER [ 0 _wk °
Next, substitute (24) and (25) into (7) to have (a) m(a)e1 = -
) TR R, (33)

—oo ACKNOWLEDGMENT

- / dkpe® T Pk - X - [83} (26) The author would like to thank the reviewers for their
precious comments.

X =
%%Cos(klsd) - 7”—618111(]31 d) 0 5
0 ’*LO' cos(ki-d) — z’fkl—s— sin(k.d)
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