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Propagation and Coupling Characteristics

of NIicrostrip Lines with Laminated

Ground Plane
Jean-Fu Kiang, Member, IEEE

Abstract— In this paper, we analyze the effect of laminated

ground plane on the propagation and coupling characteristics of

microstrip lines. Each lamina is modeled as an anisotropic layer,

and transition matrix is used to relate the tangential field com-

ponents in different laminae. An integral equation is formulated

in the spectral domain, and the Galerkin’s method is applied

to solve the integral equation for the phase and the attenuation

constants of several microstrip line structures. The effects of

substrate dielectric are also studied. The attenuation constant

variation thus obtained will be useful in circuit board design and

in stndying signal transmission in lamina environment.

I. INTRODUCTION

I N SOME MODERN multilayer circuit board designs, per-

forations are fabricated in the ground plane to improve the

adhesion between the substrates and the ground plane with

temperature variation. The designer can also route vias through

these perforations without punching holes in the ground plane.

Propagation characteristics with periodically perforated ground

plane have been analyzed by several authors [1]-[3]. In [1]

and [2], integral equations were derived based on the electric

surface current on the metal surface. In [3], the authors

used electric surface current on the microstrip line and used

magnetic surface current on the perforations as field sources.

These approaches worked well when the perforation size is

comparable to wavelength in the medium. If the microstrip

is much wider than the perforation dimension, too many

unknowns are needed to model surface currents.

Some ground planes are fabricated by laying one layer of

metallic wires over the substrate followed by another layer of

wires perpendicular to the first layer. Hence, such ground plane

can be treated as two stacking layers of anisotropic media. In

each wire layer, the conductivity along the wire orientation is

much higher than the perpendicular orientations.

Scattering from sandwiched layer of conducting fibers has

been analyzed in [4]. The fiber spacing is comparable to

wavelength, hence Floquet modes are incorporated in the

analysis. In [5], an anisotropic conductivity tensor is used to

study the shielding effectiveness of a G/E lamina which is an

epoxy resin embedding graphite fibers. G/E lamina and similar

composites have been widely used in aerospace industry. The
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fiber separation in the G/E lamina is a tiny fraction of a

wavelength, hence using an equivalent conductivity tensor is

appropriate to analyze its propagation properties.

Recently, anisotropy and inhomogeneity of the circuit board

have been considered in the analysis of high speed digital

transmission [6], [7]. In [7], a differential matrix operator is

derived from Maxwell’s equations to calculate the tangential

field components. This method was also used in optics [8],

[9], and scattering [10]. General derivation can also be found

in [11] and [12].

With either perforated ground plane or laminated ground

plane, the propagation characteristics are different from that

obtained by the solid ground plane assumption. We assume

that the wire/fiber spacing in each lamina of the ground

plane is much smaller than a wavelength, hence each lamina

can be modeled as an anisotropic layer with a conductivity

tensor. Leakage through the laminated ground plane will cause

coupling between two microstrip lines on opposite sides of the

ground plane. The coupling induces difference of phase and

attenuation constants between the even and the odd modes.

Microstrip phased array with microstrip line feeding struc-

ture has been built on aircraft surface [13]. Similar array may

be mounted on modern aircrafts where composite material is

used. Hence, it is very important and practical to understand

the propagation characteristics of microstrip line on laminated

composite ground plane.

We will first formulate a transition matrix, and then derive

an integral equation based on the electric surface current on

the microstrip lines. Galerkin’s method is applied to solve for

the phase and attenuation constants of given microstrip line

structures. Next, we apply the same procedures to study the

propagation properties of two coupled microstrip lines.

II. TRANSITION MATRIX

As shown in Fig. 1, a microstrip line is printed on the

surface of substrate layer (1), The ground plane is made of lam-

inae with each lamina described by an effective permittivity

tensor and an effective conductivity tensor. If more shielding

effectiveness is required, we may bind more laminae or choose

material of higher conductivity to form the ground plane.

We first derive a transition matrix for waves in anisotropic

layers. Assume that all layers are stacked along the z direction,

the effective permittivit y (Z) and conductivity (@) tensors in

each layer are independent of z. If the principal axis of E and
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Fig. 1, A mlcrostrlp lme m the presence of laminated ground plane,

Z skews from the x axis by an angle a (when the wires or

fibers are embedded with an angle a with the x axis), Z and

z can be expressed as

where 5. and Z. are 2 x 2 tensors. . . . = <~. COS2Q +

&_~Ysin2 a, (TY = <Yz = (&jy – &) sin Q cos ~, <Yy =

<:X sin2 Q + <~g COS2a, and& = ~~z with< be either c or O.

We also assume an isotropic permeability of p,. in all layers.

Decompose the E field. H field, and the curl operator into

z component and s (z and y) components, substitute them

into the Faraday’s and the Ampere’s laws, and look for a

solution with the xv dependence of exp(i~, . P.), we obtain

the following state-variable equations [8]–[12]

( kzky
+ –azy + Zwezg + 2—

)
Ey .

Wpo
(2)

The above equation can be solved numerically so that the

tangential field components at different Z’s are related by a

transition matrix as

III. MICROSTRIP PROPAGATION CHARACTERISTICS

For the microstrip line structure with laminated ground

plane as shown in Fig. 1, the z-component of the fields in

each region can be expressed as

E02 = r dkzeiis ‘FSeo(i,)eiko=so
J–cc

Ho, =
/:

dkzezi’ ‘sho(~, )eik”z:o
—w

El, =
/

dkze%ks ‘3
—w

J–cm

X [h,~(k.)eik”z’ + h~(k3)e–’k1”z1]

E3Z = [m dkze’kq ‘S e3(i6)e-ik3:z3
J–cc

H3Z = r dkx e*k’’F’h3(i.)e-ik3 ”z3 (5)
—CC

wherek, = ?km+ykv, Z. = z, zl = z+d, andz3 = .z+d+h.

Assume that the wave modes propagate in the y direction, then

we have kY = ~ + ia where /3 is the phase constant and a

is the attenuation constant.

At z = O, Eo. = ~1, implies

(6)

At z = O, the discontinuities of magnetic fields account for

the surface current as ~s(r,) = ii x [HO, (Z = O+) – ~l,(z =

O– )]. Hence, we have (7), shown at the bottom of the page,

(7)
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where

(8)

The tangential field components at z = ZN = – d and

Z=ZO= –a! – h are related by the transition matrix

as

F(,T,).

——

where

F(i,., z~, ‘zO)

D ~;r, ~D
Eliminating the unknowns eo, ho, e?, el , ,1 . es, and

ha from (6), (7). and (9), the tangential electric field at ~ = O

can be related to the patch surface current as

Details of derivation can be found in Appendix A.

Next, impose the boundary condition that

7,(FS)= 0, outside of the strip

E(), (F,) = o, on the strip surface.

Equation (12) is the dual vector integral equation

for the dispersion relation.

IV. GALERKIN’S METHOD

The surface current J, (~~ ) can be expressed as

For a microstrip of width a, we choose a set of basis functions

to represent J,(z) as

(12)

to be solved

J,(.z)e’L’Jy .

n=l m=o

where

{
fzn(~) = $:’~(z + “2)]’ ~:e:;~

{1

COS[* (.r+a/2)]

f,,. (~) = o ~ ‘ ::e:;:, (14)

Taking the Fourier transform of (13), and substituting into

(12), we have

/

m.

dkze’i’ “C(&,, zo = (1)
—m

[ 1

~ a.if,.(kr) + ~ &l).&7(kT) =
n=l m=o

Next, we choose another set of weighting functions

{

sin[~(x + a/2)], 1x1 < a/2
g.ck(z) = ~, else where

{

COS[$(Z + 0)/2)], Izl S a/2
$#l(r) = o, elsewhere.

o. (15)

(16)

4“1

Equation (17) constitutes a determinantal equation to be solved

for Lu at a given frequency w.

V. COUPLING THROUGH GROUND PLANE

Consider a symmetrical structure as shown in Fig. 2 in

which both the even and the odd modes exist. For the

even mode, the longitudinal current .ly on both strips are in

phase, hence H, vanishes in the midplane. We may solve an

equivalent problem with a perfect magnetic conductor at the

midplane. Likewise, we may solve an equivalent problem with

a perfect electric conductor at the midplane for the odd mode.

The difference of k,v between the even and the odd modes

indicates the coupling effect through the laminated ground

plane.
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Fig. 2. (a) Two symmetrical microstrip lines coupling through a lammated ground plane. (b) Equivalent problem for the even

problem for the odd mode.

The definitions of matrices in this section can be found in z = O

Appendix B, Following the same procedures as in Section III

for the even mode [. 1
eo

[1= T(a) ~ Cz

=–d–h

mode. (c) Equivalent

(20)
lh~ j LCYJ

[k$l=fi(’)”kl) WJ=3(’)”H
(18) where ~ = ~ when ~ = ~, and ~ = h when ~ = ~,

The surface current at z = O accounts for the discontinuity

where [eZ, ev]t is the Fourier transform of ~. at the midplane. of Hs, and can be expressed as

For the odd mode

[$~fl=E(0)”kl K$l=s(o)”kl ‘:dk’e’’sFsF(ks) ”x(”)” k]” ’21)

~.(F,) =

(19) similarly, Eo. can be expressed as

where [hz, hv] t is the Fourier transform of ~s at the midplane. EO. (F.) =
1“

dkzeihs”Fs G(a)(k., Zo) . I.(kZ). (22)
Imposing the boundary condition that J!3S is continuous at —m
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Fig. 3. Frequency dependence of effective dielectric constant for a single

mlcrostrip line on sapphire m boron nitride (—this method, ** d~ta from
[7] ). For sapphire, r~r = ~~v = 9.4e0. f~: = 11 6c., For boron nitride,

,:= = ,;,7, = 512,,,. t’. = 3.4,”.. .

Finally, impose the boundary condition as in (12) and use the

Galerkin’s procedure to solve for the dispersion relation for

the even and the odd modes.

VI. RESULTS AND DISCUSSIONS

We first verify our method by comparing effective dielectric

constants with literatures. To model the configuration in [7],

replace region (3) by a perfect electric conductor, and reduce

the thickness of region (1) to zero. The computed effective

dielectric constant of a single microstrip line is close to the

data in [7].

In Fig. 4. we compare the effective dielectric constants of

two symmetrical microstrip lines with the data in [15]. The

thickness of region (1) is reduced to zero. Our results match

reasonably well with reference data.

Floquet modes approach is used in [4], where the fiber

spacing considered is around 0.1 to 0.5 wavelengths in the

resin matrix. The accuracy of permittivity and conductivity

tensor approximation in [5] render more accurate results when

the fiber spacing is smaller in terms of wavelength in the

resin matrix. If we estimate that fiber spacing be at most five

thousandths of a wavelength in the resin for the permittivity

and conductivity tensors to be a fair approximation, then the

highest frequency our approach can be applied to GIE com-

posite is around 8 GHz if the fiber spacing is around 100 ~m.

We then analyze the propagation properties of a microstrip

line. In Figs. 5 and 6. we show the phase and attenuation

constants of a microstrip line with laminated ground plane

and with a 1 ~m-thick solid copper ground plane. The phase

constant with laminated ground plane increases as frequency

decreases, which implies a slower propagation speed. The

x x
% ix

odd mode

: ~ rvenmode
2 4 6 8 10 12

Frequency ( GHz )

Fig. 4. Effective dielectric constant of two symmetrical mlcrostrip lures
coupling through a sabstmte of thickness 2h = 128mm, a = 0.1 mm,
d=o. f:. nf’ ‘VII ‘“:Z = ‘3 !lfo(-this method, ** d~ta from [ 15])

attenuation constant in both cases increases as the frequency

decreases. The micro strip line with laminated ground plane

has a higher attenuation constant than the other line. We also

study the effect of substrate dielectric constant Cl, and observe

that substrate having higher dielectric constant gives higher

attenuation rate.

Next, we study the coupling between two symmetrical

microstrip lines on opposite sides of a Iammated ground plane.

The phase constants of the even and the odd modes differ

slightly. However, as shown in Fig. 7, the attenuation rate of

the even mode is higher than that of the odd mode especially

in the low frequency range.

In Figs. 8 and 9, we show the effect of substrate dielectric

constant on the propagation properties. The phase constant of

the even mode increases as frequency is decreased from 500

MHz. The even mode has a higher attenuation constant than

the odd mode. and the attenuation constant of both modes

increases as the substrate dielectric constant increases.

Finally, we study the effect of lamina conductivity on

the propagation properties. Assume that in each lamina. the

conductivity perpendicular to the wirelfiber orientation is

50 Wm, and the conductivity along the wire/fiber is varied

from 10AWm to 2 x 107Wm. We observe that the phase

constants of both modes are insensitive to the conductivity

variation. The attenuation constant of the even mode de-

creases monotonically with conductivity, while the odd mode

attenuation constant reaches a maximum around 106Wm. The

attenuation constant increases with the substrate dielectric con-

stant. Similar results are observed if we increase the number

of laminae instead of increasing the lamina conductivity.

In numerical computation, attention should be paid when:

1) there are too many composite layers; 2) lamina(e) is too
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Fig. 6. Attenuation constant of a micmstrip line with solid copper or laminated ground plane, the parameters are the same as m Fig. 5.

thick; or 3) laminate conductivity is too high. We may define and a~Z . We observe that when the total laminate thickness

a skin depth 6m = {= to estimate field penetration is larger than 10&, some irregular variations may appear,

into laminated media, where am is the maximum of o~~, aj ~, indicating that numerial accuracy is deteriorated by truncation
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Fig. 8. Phase constant of two symmetivcal microstnp hnes couphng through four-famma ground plane. a = 5 mm. J = 1 mm, co = 63 = c.,

tI=tz=t~=tq=127/tm,nl =UO, C12 =450. Q:j =90’’ ,04 =1350. ~( (r. = fvv = FL, = 6.. a’, , = -4 X 10-} U/m, C7jv = m!. = ,5U7J/m,. .

errors. It is related to the fact that when the laminated media The laminate thickness associated with the results presented

is too thick in terms of skin depth 6.,, coupling between the in this paper is thinner than 106m at the highest frequency

fields on planes z = –d and z = –d – h, becomes too weak. considered.
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VII. CONCLUSION Galerkin’s method is applied to solve for the dispersion

We use a transition matrix to incorporate the effect of
relation of microstrip lines. The coupling effect is analyzed by

comparing the even and the odd modes of two symmetrical

laminated ground plane into our integral equation formulation, microstrip lines on opposite sides of the laminated ground
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plane. The phase constant is less sensitive to the ground plane where it becomes as (,27), shown at the bottom of the page.

except in the low frequency range. The attenuation constant From (25) and (26). l?los can be expressed as

has a wider range of variation as the lamina conductivity and

the frequency are changed. The results are useful in designing
EO. (TJ =

!“
dk=e’;” ~’e’~O’’’O(i~)~)

circuit board and in studying signal transmission in lamina
—cc

environment. .Tz.-l . :
~F(k5) ~.(k,)

APPENDIX A
‘/”

cllize’2’’F” G(~,, zo) ~ j.
—m

In this Appendix, we present the details of deriving the

[--

koz
()

_*
/ ~

s 1

~z). (28)

relation between the tangential electric field at z = O and the
APPENDIX B

patch surface currentl Multiplying (9) by ~(~, ) and defining

Q,, = F(k,) P,,7 F(i,) with 1< 7,j <2, we have In this Appendix, we list the matrices used in deriving the

integral equation in Section V.

Solve (23) to have

)1-+Q12

1-

—

~ +Q22. rh’(k”lk,

~e,j(i,) “

(23)

(24)

[

R(e) = _ &
o

‘[s(.) –*

o

[
R(o)=– ~

[

.(0) –*

s=
o

LJG, J

Substituting (24) into (6), we obtain

and as in (32). shown at the bottom of the page

[:I=T”[$I
(25)

[--

k~,
G(a)(k,, zo) = e’L~O&zOF(kq) . ~S

o
—k!&1

Next. substitute (24) and (,25) into (7) to have

T(a) [i(a) ]-l Z(I,). s

,7. (T.) =
/“

dkle’i’”F’J. (k,)
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